392 research outputs found

    Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels

    Get PDF
    Rapid-solidification experiments were conducted for understanding dent defects formed during strip casting of twin-induced plasticity (TWIP) steels. The rapid-solidification experiments reproduced the dent defects formed on these steels, which were generally located at valleys of the shot-blasted roughness on the substrate. The rapid-solidification experiment results reveal that the number of dips, the Mn content of the steel, and the surface roughness of the substrate affect the depth and size of dents formed on the solidified-shell surfaces, while the composition of the atmosphere gases and the carbon content of the steel are not factors. The formation of dents was attributed to the entrapment of gases inside the roughness valleys of the substrate surface and their volume expansion due to the temperature of the steel melt and the latent heat. The dents could be prevented when the thermal expansion of gases was suppressed by making longitudinal grooves on the substrate surface, which allowed the entrapped gases to escape. Sound solidified shells were obtained by optimizing the width and depth of the longitudinal grooves and by controlling the shot-blasting conditions.ope

    The role of a matchmaker in buyer-vendor interactions

    Get PDF
    We consider a simple market where a vendor offers multiple variants of a certain product and preferences of both the vendor and potential buyers are heterogeneous and possibly even antagonistic. Optimization of the joint benefit of the vendor and the buyers turns the toy market into a combinatorial matching problem. We compare the optimal solutions found with and without a matchmaker, examine the resulting inequality between the market participants, and study the impact of correlations on the system.Comment: 7 pages, 5 figures, minor modification

    Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica

    Get PDF
    Recent rapid thinning of West Antarctic ice shelves are believed to be caused by intrusions of warm deep water that induce basal melting and seaward meltwater export. This study uses data from three bottom-mounted mooring arrays to show seasonal variability and local forcing for the currents moving into and out of the Dotson ice shelf cavity. A southward flow of warm, salty water had maximum current velocities along the eastern channel slope, while northward outflows of freshened ice shelf meltwater spread at intermediate depth above the western slope. The inflow correlated with the local ocean surface stress curl. At the western slope, meltwater outflows followed the warm influx along the eastern slope with a ~2–3 month delay. Ocean circulation near Dotson Ice Shelf, affected by sea ice distribution and wind, appears to significantly control the inflow of warm water and subsequent ice shelf melting on seasonal time-scales

    Global Evolution of Obesity Research in Children and Youths: Setting Priorities for Interventions and Policies

    Get PDF
    Background: Childhood obesity has become a major global epidemic that causes substantial social and health burdens worldwide. The effectiveness of childhood obesity control and prevention depends largely on understanding the issue, including its current development and associated factors in a contextualized perspective. Objectives: Our study aimed to gauge this kind of understanding. Methods: We systematically searched the Web of Science database for studies concerning child obesity published up to 2017 and analyzed the volume of publications, growth rates, impact scores, collaborations, authors, affiliations, and journals. A total of 57,444 research papers were included. Results: The three subject categories with the highest number of papers (over 3,000) were (1) nutrition and dietetics, (2) pediatrics, and (3) public, environmental, and occupational health. We found a dramatic increase in the amount of scientific literature on childhood obesity in the past one or two decades, led by scholars from the USA – ranking at the top regarding the total number of papers (23,965 papers; 30.8%) and total number of citations (859,793 citations) – and multiple Western countries where the obesity epidemic is prevalent. Conclusions: The findings highlight the need for improving international and local research capacities and collaboration to accelerate knowledge production and translation into contextualized and effective childhood obesity prevention

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    The COSINE-100 liquid scintillator veto system

    No full text
    This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2–6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold

    Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics

    Get PDF
    In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications.114419Ysciescopu

    Measurement of the cosmic muon annual and diurnal flux variation with the COSINE-100 detector

    Get PDF
    We report measurements of annual and diurnal modulations of the cosmic-ray muon rate in the Yangyang underground laboratory (Y2L) using 952 days of COSINE-100 data acquired between September 2016 and July 2019. A correlation of the muon rate with the atmospheric temperature is observed and its amplitude on the muon rate is determined. The effective atmospheric temperature and muon rate variations are positively correlated with a measured effective temperature coefficient of αT = 0.80 ± 0.11. This result is consistent with a model of meson production in the atmosphere. We also searched for a diurnal modulation in the underground muon rate by comparing one-hour intervals. No significant diurnal modulation of the muon rate was observed

    A Bibliometric Analysis of the Global Research Trend in Child Maltreatment

    Get PDF
    Child maltreatment remains a major health threat globally that requires the understanding of socioeconomic and cultural contexts to craft effective interventions. However, little is known about research agendas globally and the development of knowledge-producing networks in this field of study. This study aims to explore the bibliometric overview on child maltreatment publications to understand their growth from 1916 to 2018. Data from the Web of Science Core Collection were collected in May 2018. Only research articles and reviews written in the English language were included, with no restrictions by publication date. We analyzed publication years, number of papers, journals, authors, keywords and countries, and presented the countries collaboration and co-occurrence keywords analysis. From 1916 to 2018, 47, 090 papers (53.0% in 2010–2018) were published in 9442 journals. Child Abuse & Neglect (2576 papers; 5.5%); Children and Youth Services Review (1130 papers; 2.4%) and Pediatrics (793 papers, 1.7%) published the most papers. The most common research areas were Psychology (16, 049 papers, 34.1%), Family Studies (8225 papers, 17.5%), and Social Work (7367 papers, 15.6%). Among 192 countries with research publications, the most prolific countries were the United States (26, 367 papers), England (4676 papers), Canada (3282 papers) and Australia (2664 papers). We identified 17 authors who had more than 60 scientific items. The most cited papers (with at least 600 citations) were published in 29 journals, headed by the Journal of the American Medical Association (JAMA) (7 papers) and the Lancet (5 papers). This overview of global research in child maltreatment indicated an increasing trend in this topic, with the world’s leading centers located in the Western countries led by the United States. We called for interdisciplinary research approaches to evaluating and intervening on child maltreatment, with a focus on low-middle income countries (LMICs) settings and specific contexts
    corecore